Conditional Generative Adversarial Networks for Speech Enhancement and Noise-Robust Speaker Verification
نویسندگان
چکیده
Improving speech system performance in noisy environments remains a challenging task, and speech enhancement (SE) is one of the effective techniques to solve the problem. Motivated by the promising results of generative adversarial networks (GANs) in a variety of image processing tasks, we explore the potential of conditional GANs (cGANs) for SE, and in particular, we make use of the image processing framework proposed by Isola et al. [1] to learn a mapping from the spectrogram of noisy speech to an enhanced counterpart. The SE cGAN consists of two networks, trained in an adversarial manner: a generator that tries to enhance the input noisy spectrogram, and a discriminator that tries to distinguish between enhanced spectrograms provided by the generator and clean ones from the database using the noisy spectrogram as a condition. We evaluate the performance of the cGAN method in terms of perceptual evaluation of speech quality (PESQ), short-time objective intelligibility (STOI), and equal error rate (EER) of speaker verification (an example application). Experimental results show that the cGAN method overall outperforms the classical short-time spectral amplitude minimum mean square error (STSA-MMSE) SE algorithm, and is comparable to a deep neural network-based SE approach (DNN-SE).
منابع مشابه
Adversarial Network Bottleneck Features for Noise Robust Speaker Verification
In this paper, we propose a noise robust bottleneck feature representation which is generated by an adversarial network (AN). The AN includes two cascade connected networks, an encoding network (EN) and a discriminative network (DN). Melfrequency cepstral coefficients (MFCCs) of clean and noisy speech are used as input to the EN and the output of the EN is used as the noise robust feature. The ...
متن کاملExploring Speech Enhancement with Generative Adversarial Networks for Robust Speech Recognition
We investigate the effectiveness of generative adversarial networks (GANs) for speech enhancement, in the context of improving noise robustness of automatic speech recognition (ASR) systems. Prior work [1] demonstrates that GANs can effectively suppress additive noise in raw waveform speech signals, improving perceptual quality metrics; however this technique was not justified in the context of...
متن کاملCan we steal your vocal identity from the Internet?: Initial investigation of cloning Obama's voice using GAN, WaveNet and low-quality found data
Thanks to the growing availability of spoofing databases and rapid advances in using them, systems for detecting voice spoofing attacks are becoming more and more capable, and error rates close to zero are being reached for the ASVspoof2015 database. However, speech synthesis and voice conversion paradigms that are not considered in the ASVspoof2015 database are appearing. Such examples include...
متن کاملInvariant Representations for Noisy Speech Recognition
Modern automatic speech recognition (ASR) systems need to be robust under acoustic variability arising from environmental, speaker, channel, and recording conditions. Ensuring such robustness to variability is a challenge in modern day neural network-based ASR systems, especially when all types of variability are not seen during training. We attempt to address this problem by encouraging the ne...
متن کاملI-vector Transformation Using Conditional Generative Adversarial Networks for Short Utterance Speaker Verification
I-vector based text-independent speaker verification (SV) systems often have poor performance with short utterances, as the biased phonetic distribution in a short utterance makes the extracted i-vector unreliable. This paper proposes an i-vector compensation method using a generative adversarial network (GAN), where its generator network is trained to generate a compensated i-vector from a sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017